Uniform blow-up rate for a porous medium equation with a weighted localized source

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniform blow-up rate for a porous medium equation with a weighted localized source

* Correspondence: [email protected] School of Automation, Southeast University, Nanjing 210096, China Full list of author information is available at the end of the article Abstract In this article, we investigate the Dirichlet problem for a porous medium equation with a more complicated source term. In some cases, we prove that the solutions have global blow-up and the rate of blow-up is unifo...

متن کامل

Multiple blow-up for a porous medium equation with reaction

The present paper is concerned with the Cauchy problem { ∂tu = ∆u + u in R × (0,∞), u(x, 0) = u0(x) ≥ 0 in R , with p,m > 1. A solution u with bounded initial data is said to blow up at a finite time T if lim supt↗T ‖u(t)‖L∞(RN ) = ∞. For N ≥ 3 we obtain, in a certain range of values of p, weak solutions which blow up at several times and become bounded in intervals between these blow-up times....

متن کامل

Asymptotic analysis to blow-up points for the porous medium equation with a weighted non-local source

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, redistribution , reselling , loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to da...

متن کامل

Regional, Single Point, and Global Blow-up for the Fourth-order Porous Medium Type Equation with Source

Blow-up behaviour for the fourth-order quasilinear porous medium equation with source, (0.1) ut = −(|u|u)xxxx + |u|u in R × R+, n > 0, p > 1, is studied. Countable and finite families of similarity blow-up patterns of the form uS(x, t) = (T − t)− 1 p−1 f(y), where y = x/(T − t) , β = p−(n+1) 4(p−1) , which blow-up as t → T− < ∞, are described. These solutions explain key features of regional (f...

متن کامل

Lower Bounds for Blow-up Time of Porous Medium Equation with Nonlinear Flux on Boundary

tributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract In this paper, we investigate the lower bounds for the blow-up time of the non-negative solutions of porous medium equation with Neumann boundary conditions. We find that the blow-up time are bounded below b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Boundary Value Problems

سال: 2011

ISSN: 1687-2770

DOI: 10.1186/1687-2770-2011-57